CK CHEMISTRY

Retrieval Practice: Year 13 Number 4

Rules: Never look at your notes for retrieval practice! Do as many as you can, even if they are educated guesses. When you have tried (hard!) to answer them all, check the mark scheme and rate each question:

($\hat{}$	(،	Easy,	remembered	perfectly
,	$\overline{}$	ン	,		P ,

(Harder - could remember part of it or was familiar when I saw the answer

Very hard - didn't recognise the answer so need to go back over this

	Question	Rating
1	Write an ionic equation for the reaction between potassium bromide and chlorine	
2	Name the type of reaction occurring between ethene and hydrogen bromide	
3	Calculate the energy transferred, in Joules, if 200 cm ³ of water was heated from 21°C to 55°C (Specific heat capacity of water = 4.18 Jg ⁻¹ K ⁻¹)	
4	Draw the skeletal formula of 2-methylhexan-3-one	
5	Calculate the M _r of hydrated sodium carbonate, Na ₂ CO ₃ .10H ₂ O	
6	Write a balanced equation, with state symbols, for the standard enthalpy of combustion of pentan-1-ol	
7	Calculate the number of moles of gas present if the gas occupies a volume of 500 cm ³ at 50°C and 200 kPa pressure (R = 8.31 Jmol ⁻¹ K ⁻¹). Give your answer to 3SF.	
8	Define relative atomic mass	
9	Give the reagents and conditions for the reaction to produce propanal from propan-1-ol	
10	Write an equation, including state symbols, for the second ionisation energy of potassium	

CK CHEMISTRY

Answers:

	Question					
	Write an ionic equation for the reaction between potassium bromide and					
1	chlorine					
	$2Br^{-} + Cl_{2} \rightarrow 2Cl^{-} + Br_{2}$					
2	Name the type of reaction occurring between ethene and hydrogen bromide Electrophilic addition					
	Calculate the energy transferred, in Joules, if 200 cm ³ of water was heated					
	from 21°C to 55°C					
3	(Specific heat capacity of water = 4.18 Jg ⁻¹ K ⁻¹)					
	$q = mc\Delta T$					
	q = 200 x 4.18 x 34 = 28424 J					
	Draw the skeletal formula of 2-methylhexan-3-one					
4						
7						
5	Calculate the M _r of hydrated sodium carbonate, Na ₂ CO ₃ .10H ₂ O					
	106 + 10 x 18 = 286					
4	Write a balanced equation, with state symbols, for the standard enthalpy of					
6	combustion of pentan-1-ol $C_5H_{11}OH(l) + 7.5 O_2(g) \rightarrow 5 CO_2(g) + 6 H_2O(l)$					
	Calculate the number of moles of gas present if the gas occupies a volume of					
	500 cm ³ at 50°C and 200 kPa pressure. Give your answer to 3SF.					
7	$(R = 8.31 \text{ Jmol}^{-1} \text{K}^{-1})$					
	$P = 200\ 000\ Pa$ $V = 5 \times 10^{-4} \text{m}^3$ $T = 323\ \text{K}$					
	n = PV/RT = 0.0373 (be careful of rounding!) Define relative atomic mass					
8	• the (weighted) mean/average mass of an atom					
	 on a scale where one ¹²C atom = 12/ compared to 1/12th of a ¹²C atom 					
	Give the reagents and conditions for the reaction to produce propanal from					
9	propan-1-ol					
7	Acidified (potassium) dichromate (or $Cr_2O_7^{2-}/H^+$)					
	Distil the product as it forms/heat under distillation					
10	Write an equation, including state symbols, for the second ionisation energy of					
10	potassium $K^{+}(g) \rightarrow K^{2+}(g) + e^{-}$					
	N (3) / N (3) * C					