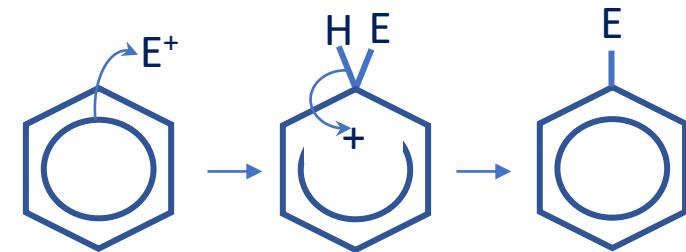


Example equations



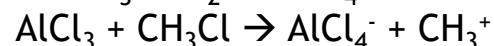
Which functional groups?

Arenes:

Electrophiles accept electrons from the delocalised electron ring and substitute a H atom which is lost as H^+

Mechanism

E^+ = the electrophile, e.g. Cl^+ , NO_2^+ , CH_3^+


Electrophilic Substitution

ckchemistry.co.uk

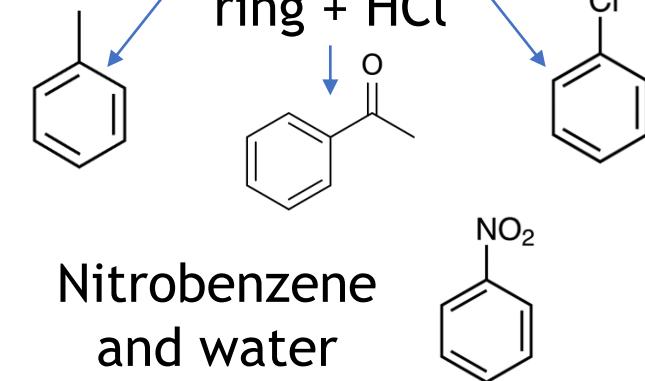
ckchemistry.co.uk

Formation of electrophile using $AlCl_3$

Formation of NO_2^+ electrophile

Phenol does not require a catalyst to react with halogens and only requires dilute HNO_3 for nitration – multiple substitutions occur

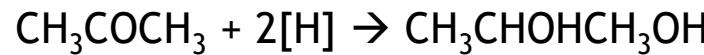
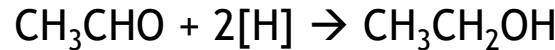
Important notes


Halogen
Haloalkane
Acyl Chloride

Use a 'halogen carrier' catalyst:
 $AlCl_3$ (or $FeBr_3$)

Nitration: Conc H_2SO_4 and conc HNO_3 , below $55^{\circ}C$ to prevent further substitutions

Reagents/conditions



Substituted benzene ring + HCl

Nitrobenzene and water

Products of the reaction

Example equations

The reducing agents LiAlH_4 or NaBH_4 provide **hydride ions**, H^- . These attack the $\delta+$ carbon. LiAlH_4 is a **strong reducing agent** that can reduce nitriles and carboxylic acids as well as ketones and aldehydes. NaBH_4 only reduces aldehydes and ketones.

Important notes

Which functional groups?

Aldehydes or ketones:

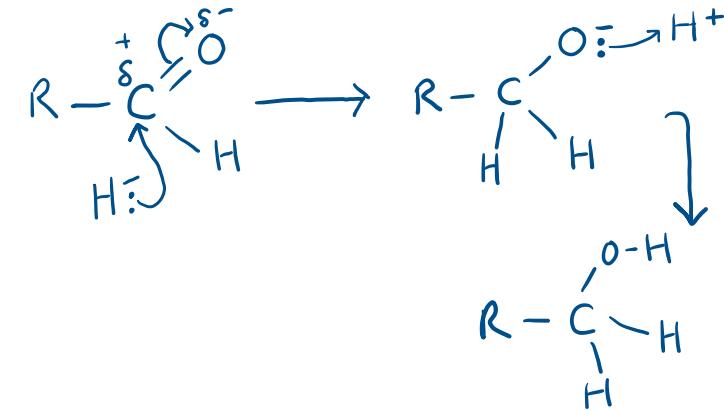
Form primary or secondary alcohols

Nitriles: form amines

Nitrobenzene: forms aminobenzene

Reduction

Aldehyde/ketone: NaBH_4 or LiAlH_4 , ether solvent, followed by dilute acid (to provide H^+ ions)


Nitrile: LiAlH_4 as above or H_2 with nickel catalyst

Nitrobenzene: Tin and concentrated HCl

Reagents/conditions

Mechanism*

*Only C=O addition mechanism needed

For C=O reduction primary or secondary alcohols are made (you can't make an aldehyde from a carboxylic acid).

For $-\text{CN}$ and $-\text{NO}_2$ amines are made.

Products of the reaction

Example equations

**This is more commonly known as dehydration*

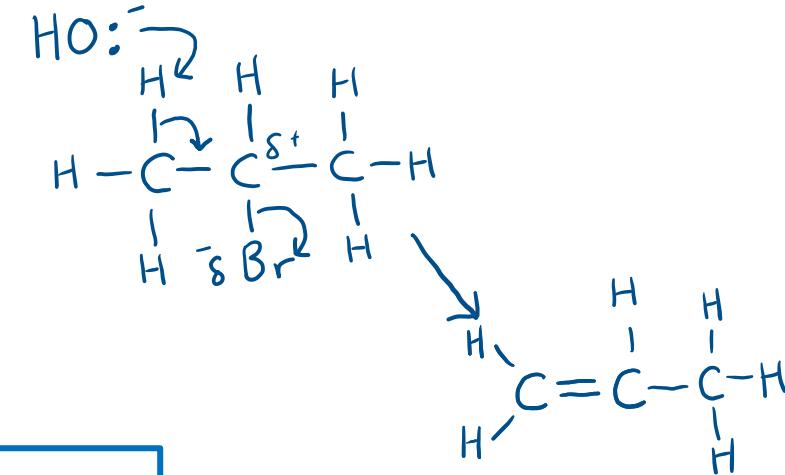
ckchemistry.co.uk

Which functional groups?

Haloalkanes:

Molecule loses H from the carbon adjacent to the C-Hal bond, then loses the halogen atom to form a C=C bond

Elimination


Elimination is the opposite to an addition reaction. OH^- ions act as a **base** to remove H^+ from carbon adjacent to C-Hal bond.

The solvent is important: KOH/NaOH in aqueous solvent will result in nucleophilic substitution to produce an alcohol from a haloalkane.

Important notes

Mechanism*

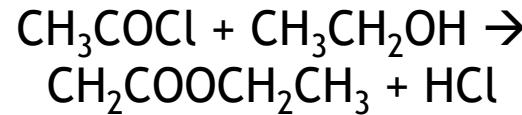
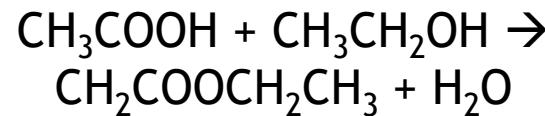
**Needed for AQA*

ckchemistry.co.uk

Haloalkanes:

KOH or NaOH dissolved in ethanol, heated under reflux

Alcohols (dehydration):
Heated with concentrated H_2SO_4 or H_3PO_4



Reagents/conditions

The product is always an **alkene** plus a small molecule.

Different structural isomers can form: H^+ can be removed from either side of the C-Hal. For example, 2-bromobutane could produce but-1-ene or but-2-ene (which also has stereoisomers!).

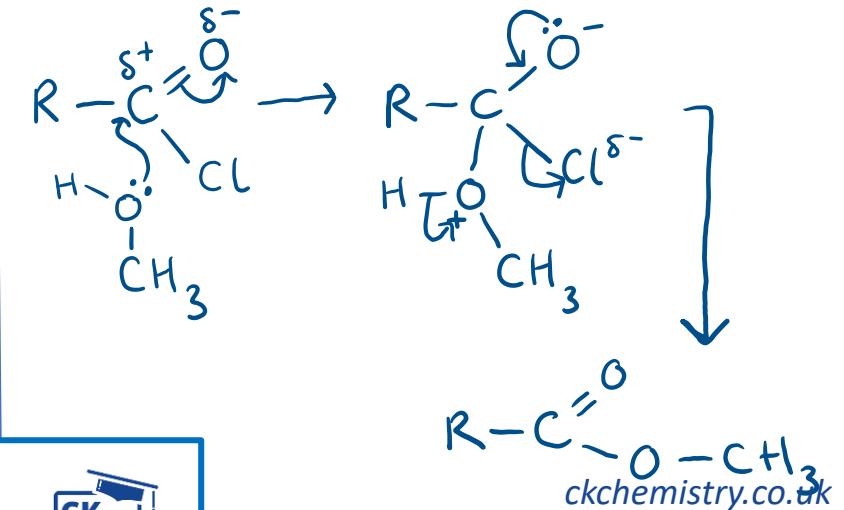
Products of the reaction

Example equations

ckchemistry.co.uk

Which functional groups?

Alcohol and carboxylic acid


Alcohol and acyl chloride

Amine and acyl chloride

These molecules join together by loss of a small molecule such as H_2O or HCl . The products are esters or amides.

Mechanism*

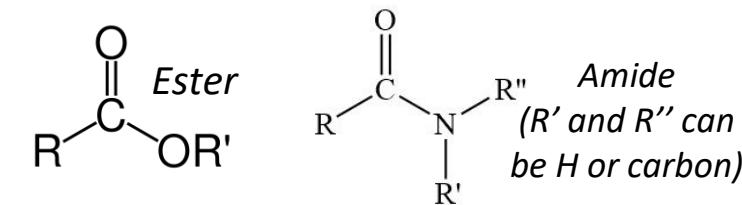
*Acyl chloride mechanism needed for AQA

Condensation

Reaction between carboxylic acids and alcohols is **reversible** so lower yield.

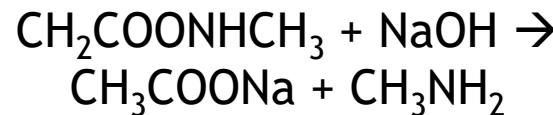
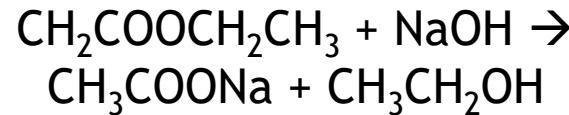
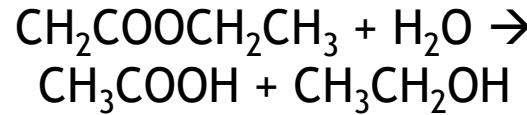
Acyl chlorides are **highly reactive** so give a higher yield, but you have to keep them away from water (they will react to form RCOOH) and the reaction produce fumes of HCl .

Important notes


Alcohol and carboxylic acid: reflux with a catalyst of conc H_2SO_4

Acyl chloride with amine or alcohol: room temperature, dry ether solvent

Reagents/conditions




Organic products are **esters** or **amides**.

The reaction also produces a small molecule – usually water or HCl .

Products of the reaction

Example equations

Which functional groups?

Esters or amides:

Bond between C=O carbon and O (ester) or N (amide) breaks to form two organic molecules

(Also haloalkanes and nitriles – see right)

Other examples

Haloalkanes: in hot water or aqueous NaOH the C-Hal bond breaks to produce an alcohol (nucleophilic substitution)

Nitriles: the CN bond can be broken using either hot dilute acid or alkali, to form a carboxylic acid and ammonia.

Hydrolysis

Hydrolysis = breaking bonds using water

Acid hydrolysis: the acid acts as a catalyst and the reaction is reversible

Alkaline hydrolysis: NaOH is a reagent and the reaction goes to completion – the carboxylate salt is formed

Important notes

Acid hydrolysis: dilute acid

Alkaline hydrolysis: dilute

aqueous NaOH

Both require reflux

Reagents/conditions

Acid hydrolysis:

Ester: $\text{RCOOH} + \text{ROH}$

Amide: $\text{RCOOH} + \text{RNH}_3^+$

Alkaline hydrolysis:

Ester: $\text{RCOO}^- + \text{ROH}$

Amide: $\text{RCOO}^- + \text{RNH}_2$

Products of the reaction