Solution and concentration calculations - answers at the end of the booklet

- a) Calculate the concentration of a solution (in moldm⁻³) which contains 0.2 moles of sodium chloride dissolved in 25cm³ (1)
- b) A solution of ammonium iodide (NH₄I) is made by dissolving 2.9 grams in 250 cm³ of water. Calculate the concentration of the solution in mol dm⁻³ (2)
- c) A solution of magnesium carbonate, MgCO₃, has a concentration of 0.4 mol dm⁻³. Calculate its concentration in g dm⁻³ (2)
- d) A solution was made by bubbling 72 cm³ of ammonia gas (at room temperature and pressure) into 50 cm³ of water. Calculate the concentration of the resulting solution assuming all the ammonia dissolved. (2)
- e) What mass of hydrated sodium carbonate, Na₂CO₃.10H₂O, must be dissolved in 250cm³ of solution in order to give a concentration of 0.0500 mol dm⁻³? (3)

Calculations from experiments - answers at the end of the booklet

a) What is the minimum volume of 2.00 mol dm⁻³ hydrochloric acid needed to react with 1.20 g magnesium carbonate, MgCO₃?

$$2HCl + MgCO_3 \rightarrow MgCl_2 + CO_2 + H_2O$$
 (4)

b) 25.0 cm³ of a 0.200 mol dm⁻³ solution of sodium carbonate was neutralised by 20.0 cm³ of dilute hydrochloric acid. Find the concentration, in g dm⁻³, of the acid using the equation for the reaction below.

$$Na_2CO_3$$
 (aq) + 2HCl (aq) \rightarrow 2NaCl (aq) + CO₂ (g) + H₂O (l) (3)

c) What volume of oxygen (at RTP) could be obtained from decomposition of 100 cm³ of a 2.00 mol dm⁻³ solution of hydrogen peroxide?

$$2H_2O_2 \rightarrow 2H_2O + O_2 \tag{3}$$

Extension question (hints on the next page)

This is a deliberately challenging question! The idea is to see how many parts of the calculation you are able to do - not necessarily to be able to get to the right answer straight away. On the next page the steps have been broken down for you.

A sample of sodium hydrogen carbonate crystals, Na₂CO₃.10H₂O, had been heated too strongly and lost some of its waters of crystallisation.

2.696 g of the solid were dissolved in water and made up to 250 cm³ in a volumetric flask.

In a series of titrations, 25.0 cm³ portions of the solution were titrated with 0.10 mol dm⁻³ hydrochloric acid, giving the results shown below:

Titration number	1 (rough)	2	3
Final burette reading / cm ³	22.00	23.00	22.15
Initial burette reading / cm³	1.00	2.35	1.60

Determine the percentage of loss of mass from the crystals using these titration results.

(10 marks)

Extension question - hints on how to break down this question (explanation will also be given on video)

<u>Step one</u>: analyse the titration results to find the number of moles of hydrochloric acid used.

- Work out the volume of acid added (the titre) for each of the three sets of titration results
- Choose only concordant results they must differ by no more than 0.2 cm³. (hint only two results are concordant).
- Find the mean of these results to get your volume of acid in cm³.
- Convert the volume to dm³ and use the concentration of acid given to work out number of moles of HCl in the titration volume.

<u>Step two</u>: use moles of acid in titration to work out moles of sodium carbonate in the solid sample.

- Write a balanced equation for the reaction between sodium carbonate and hydrochloric acid (use the formula Na₂CO₃, without the waters of crystallisation as these would just form part of the solution when the solid dissolves).
- Work out the moles of sodium carbonate in the 25cm³ titration sample using the moles of acid and the ratio in the balanced equation.
- There would be 10x as many moles in the original solid sample, because it was made up to 250cm³ and then only 25cm³ samples were titrated.

Step three: work out how the mass of the sample has changed.

- Work out the Mr of the hydrated salt, Na₂CO₃.10H₂O.
- You know how many moles of Na_2CO_3 there are in the sample, so you can work out the maximum mass of the sample what it would be if all the water were still present.
- You know the actual mass of the sample, so you can work out how much mass was lost by heating.
- Now divide the mass lost by the original (maximum) mass to get the percentage of mass lost.

Solution and concentration calculations - answers

a) Calculate the concentration of a solution (in mol dm⁻³) which contains 0.2 moles of sodium chloride dissolved in 25cm³ (1)

 $25 / 1000 = 0.025 \, dm^3$

Concentration = $0.2 / 0.025 = 8.0 \text{ mol dm}^{-3}$

b) A solution of ammonium iodide (NH₄I) is made by dissolving 2.9 grams in 250 cm³ of water. Calculate the concentration of the solution in mol dm⁻³ (2)

 $M_r NH_4I = 145$

Moles = 2.9 / 145 = 0.0200

 $vol = 250 / 1000 = 0.250 dm^3$

Concentration = $0.0200 / 0.25 = 0.0800 \text{ mol dm}^{-3}$

c) A solution of magnesium carbonate, MgCO₃, has a concentration of 0.4 mol dm⁻³.

Calculate its concentration in g dm⁻³ (2)

 $M_r MgCO_3 = 84$

Mass = $84 \times 0.4 = 33.6$

Concentration = 33.6 g dm⁻³

d) A solution was made by bubbling 72 cm³ of ammonia gas (at room temperature and pressure) into 50 cm³ of water. Calculate the concentration of the resulting solution assuming all the ammonia dissolved. (2)

Volume ammonia = $72 / 1000 = 0.072 \text{ dm}^3$

Moles ammonia = 0.072 / 24 = 0.003 mol

(you could also make this one step by dividing 72 by 24000)

Volume solution = $50 / 1000 = 0.05 \text{ dm}^3$

Concentration = $0.003 / 0.05 = 0.06 \text{ mol dm}^{-3}$

e) What mass of hydrated sodium carbonate, $Na_2CO_3.10H_2O$, must be dissolved in $250cm^3$ of solution in order to give a concentration of 0.0500 mol dm⁻³? (3)

Volume of solution = 250/1000 = 0.25 dm3

Moles = $0.25 \times 0.05 = 0.0125$

 $Mr Na_2CO_3.10H_2O = 106 (Na_2CO_3) + 180 (10H_2O) = 286$

Mass = $0.0125 \times 286 = 3.575 g$

Calculations from experiments - answers

a) What is the minimum volume of 2.00 mol dm⁻³ hydrochloric acid needed to react with 1.20 g magnesium carbonate, MgCO₃?

$$2HCl + MgCO_3 \rightarrow MgCl_2 + CO_2 + H_2O \tag{4}$$

 $Mr MgCO_3 = 84$

 $Mol MgCO_3 = 1.2 / 84 = 0.01429$

Mol HCl = $0.01429 \times 2 = 0.02858$

Volume of HCl = moles / concentration = 0.02858 / 2 = 0.01429 dm³

 $(x 1000 = 14.29 \text{ cm}^3)$

b) 25.0 cm³ of a 0.200 mol dm⁻³ solution of sodium carbonate was neutralised by 20.0 cm³ of dilute hydrochloric acid. Find the concentration, in g dm⁻³, of the acid using the equation for the reaction below.

$$Na_2CO_3$$
 (aq) + 2HCl (aq) \rightarrow 2NaCl (aq) + CO₂ (g) + H₂O (l) (3)

Mol sodium carbonate = $0.2 \times (25/1000) = 0.005$ Mol HCl = $0.005 \times 2 = 0.01$ Concentration in mol dm⁻³ = 0.01 / (20/1000) = 0.5 mol dm⁻³ M_r HCl = 36.5Concentration in g dm⁻³ = $0.5 \times 36.5 = 18.25$ g dm⁻³

c) What volume of oxygen (at RTP) could be obtained from decomposition of 100 cm³ of a 2.00 mol dm⁻³ solution of hydrogen peroxide?

$$2H_2O_2 \rightarrow 2H_2O + O_2 \tag{3}$$

Volume hydrogen peroxide = $100/1000 = 0.1 \text{ dm}^3$

Mol hydrogen peroxide = $0.1 \times 2 = 0.2 \text{ mol}$

Mol oxygen = 0.2 / 2 = 0.1 mol

Volume oxygen = $0.1 \times 24 = 2.4 \text{ dm}^3 \text{ OR } 2400 \text{ cm}^3$